Hyers-Ulam stability of Volterra integral equation

نویسندگان

  • M. Gachpazan Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
  • O. Baghani Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده مقاله:

We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hyers-ulam stability of volterra integral equation

we will apply the successive approximation method forproving the hyers--ulam stability of a linear integral equation ofthe second kind.

متن کامل

Hyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach

‎In this paper‎, ‎we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method‎.

متن کامل

Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay

In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.

متن کامل

Hyers–ulam Stability of a Polynomial Equation

The aim of this paper is to prove the stability in the sense of Hyers–Ulam stability of a polynomial equation. More precisely, if x is an approximate solution of the equation x + αx + β = 0, then there exists an exact solution of the equation near to x.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 2

صفحات  19- 25

تاریخ انتشار 2010-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023